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Abstract
We investigate critical drying for a model system in which fluid–fluid and
wall–fluid interatomic potentials decay as −r−6. For a spherical substrate
of radius R and liquids at bulk coexistence we show, by means of an
effective interfacial potential approach, that at the planar drying transition
temperature the modulus of the adsorption per unit area diverges as R1/4 and the
wall–liquid surface tension has a term in R−3/4. The results of microscopic
density functional calculations confirm this nonanalytic dependence on the
curvature (R−1) and point to the possibility of layers of depleted fluid density
developing at a solvophobic substrate.

1. Introduction

A critical wetting transition is one in which the thickness of the wetting film of liquid adsorbed
at a planar substrate diverges continuously as the wetting temperature Tw is approached from
below following a path at bulk gas–liquid coexistence [1, 2]. Of particular interest is the case
where both the fluid–fluid and wall–fluid interatomic potentials are long ranged, i.e., both
decay as −r−6 where r is the interatomic distance. Dietrich and Schick [3] demonstrated how
critical wetting could occur for lattice gas models of such systems and there is evidence from
experiment [4] for critical transitions. Studies of critical drying, where the reservoir is a liquid
at bulk coexistence and the adsorbed film is a dilute gas, are less common. A summary of the
results for drying in systems with short-ranged potentials is given in [5]. Here we show that
critical drying occurs for a continuum Lennard-Jones type of liquid adsorbed at a planar wall
that has a hard repulsive potential plus a (weak) long-ranged attractive tail. We investigate
the effects of curvature on the drying transition by calculating the Gibbs adsorption � and
wall–liquid surface tension γwl(R) of the liquid adsorbed at a spherical wall.

In section 2 we generalize the effective interfacial potential approach used in our earlier
investigation [6] of complete drying on a hard spherical cavity to include a long-ranged wall–
fluid potential. This allows us to make specific predictions for the equilibrium thickness of
the drying film and the curvature dependence of γwl(R) in the neighbourhood of the planar
drying transition. In section 3 we describe the results of a microscopic density functional
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treatment (DFT) of the same problem aimed at testing the predictions of non-analytic features
in interfacial properties. We conclude in section 4 with a discussion of the general significance
of our results.

Our treatment of the effective interfacial potential is similar to the sharp-kink
approximation used by Bieker and Dietrich [7] in a comprehensive investigation of wetting
for fluids adsorbed on spheres and cylinders. Unlike [7] we focus on drying, with the liquid
at bulk coexistence and temperatures well below the bulk critical temperature. Moreover, we
analyse the surface tension.

2. The effective interfacial potential

We consider a reservoir of liquid at liquid–gas coexistence, i.e., with chemical potential µ+
co.

The excess (over bulk) grand potential per unit area in the planar system can be written as
the sum of the surface tensions of the separate wall–gas, γwg(∞), and gas–liquid, γgl(∞),
interfaces plus terms arising from the interaction between these two interfaces. For a spherical
wall (radius R) the leading order curvature correction to the planar effective interfacial potential
is proportional to the Laplace pressure. This term corresponds to the free energy cost of
increasing the area of the gas–liquid interface; l is the thickness of the drying film. The excess
grand potential per unit area can be written as

�ex(l; R)

4π R2
= γwg(R) + γgl(R) + w(l) +

2l

R
γgl(∞), (1)

and we have omitted higher order terms [6]. The interaction between the two planar interfaces
can be calculated within the sharp-kink approximation:

ω(l) = (ρl − ρg)

(
ρw

∫ ∞

l+dw

vw(z ′) dz′ − ρg

∫ ∞

l
v(z′) dz ′

)
(2)

where ρwvw(z) is the attractive wall–fluid potential and ρgv(z) is the attractive potential exerted
on a single fluid particle by a semi-infinite slab of gas [6]. The densitiesρg, ρl and ρw correspond
to the coexisting bulk gas, liquid and wall respectively; dw is the width of the excluded volume
region between the wall and the fluid where the density is zero [1]. The attractive interaction
between two fluid particles, distance r apart, is taken to be a Lennard-Jones (12–6) potential:
φatt(r) = 4ε((σ/r)12 − (σ/r)6) for r > rmin and −ε for r < rmin, where rmin = 21/6σ . The
attractive wall–fluid interparticle potential has the same form, with the parameters εwf and σwf

replacing ε and σ , and the resulting expression for w(l) is

w(l) = b(T )

l2
+

c(T )

l3
+ O

(
1

l4

)
, (3)

where the Hamaker constant b(T ) = (ρgεσ
6 − ρwεwfσ

6
wf )b0, c(T ) = 2dwρwεwfσ

6
wf b0,

b0 = (ρl − ρg)
π
3 and the excluded length dw = (σ + σwf )/2. Whereas the coefficient b(T )

is expected to be correct beyond the sharp-kink approximation, c(T ) will be affected by the
smoothness of the microscopic density profile as shown by Napiórkowski and Dietrich [8] in
the case of a wetting.

In the planar system a drying transition occurs if b(T ) changes sign from negative to
positive on increasing T . This is possible because the coexisting gas density, ρg, increases with
increasing T . Since c(T ) is always positive the position of the minimum in �ex(l; R) changes
continuously from finite l to l = ∞ at the transition temperature Td, given by b(Td) = 0.
Alternatively, the value of b(T ) can be altered by varying the wall density ρw or the strength
of the wall–fluid inter-particle potential εwf rather than the temperature T . The equilibrium
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drying film thickness is leq = −3c(T )/2b(T ) (b(T ) < 0). Near to the drying transition
b(T ) ∼ t where t = (T − Td)/Td. Since c(T ) changes slowly the drying film thickness
diverges as leq ∼ |t|−1. Later it will be more convenient to use the dimensionless quantity
t ′ = (ρgεσ

6 − ρwεwfσ
6
wf )βσ−3 ∝ t (as t → 0) as a measure of the proximity to the transition.

For a system with non-zero curvature, minimizing (1) w.r.t. l yields

leq = σ

|t ′| L

(
σ

R

1

t ′4

)
(4)

where L is a scaling function. �ex(leq; R) is equivalent to the surface tension γwl(R), which
can be written in terms of another scaling function �, i.e.,

γwl(R) = γwg(R) + γgl(R) + |t ′|3�
(

σ

R

1

t ′4

)
. (5)

We examine the behaviour in three different regimes.

(i) Sufficiently far below the drying transition temperature and for sufficiently large radius,
such that |b|/ l2 � lγgl(∞)/R, the effects of curvature can be treated as small
perturbations to the planar results. In this regime the drying film thickness and the surface
tension have analytic expansions in the curvature (1/R).

(ii) As T → T −
d , b(T ) → 0− and the drying film thickness increases. The leading order

behaviour is now determined by the terms c(T )/ l3 and 2lγgl(∞)/R in (1). At T = Td

minimizing (1) yields

leq(Td) =
(

3c(Td)R

2γgl(∞)

)1/4

, (6)

equivalent to the result for critical wetting given in [7]. Curvature limits the film thickness
to a finite value. The corresponding surface tension is

γwl(R) = γwg(∞) + γgl(∞) +
8

3

(
3γgl(∞)3c(Td)

2R3

)1/4

+ O

(
1

R

)
(7)

where we have assumed that the leading order corrections to γwg(R) and γgl(R) are O(1/R)

[6]. Clearly γwl(R) is non-analytic in 1/R.
(iii) For T � Td the drying film thickness is large so that the term c(T )/ l3 in (1) becomes

insignificant. Comparing with [6] we see that this situation is equivalent to the liquid
adsorbed at a hard spherical cavity where complete drying always occurs and leq =
[b(T )R/γgl(∞)]1/3.

3. Results from density functional theory

Numerical DFT calculations were performed for the same model fluid and functional as
described in [6]. The hard sphere part of the free energy was treated by means of Rosenfeld’s
fundamental measures theory [9] and the attractive part of the fluid–fluid interaction potential
was treated in mean-field fashion. The functional satisfies the Gibbs adsorption theorem and
the hard-wall contact density sum-rule [6].

Figure 1 shows four planar wall–liquid interface density profiles. These illustrate partial
drying (sometimes called dewetting) and correspond to different strengths of the attractive
wall–fluid potential at fixed T = 0.7Tc, where Tc is the bulk critical temperature. For profile
(a) ρwεwf is strongest and the contact angle of the liquid with the wall is the smallest of the
four, indicating that this state is the furthest from a drying transition. For sufficiently small
ρwεwf , b(T ) → 0− and the wall becomes completely dry. Then a thick (macroscopic) film of
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Figure 1. Density profiles of the liquid (density ρlσ
3 = 0.667) adsorbed at planar walls

exerting different strength potentials εwf on the fluid. The bulk liquid is at coexistence, µ+
co(T ),

and T = 0.7Tc. t ′ is −0.5, −0.33, −0.14 and −0.04 and the contact angles (defined by
cos θ = (γwg − γwl)/γgl) are θ = 139◦ , 154◦ , 169◦ and 177◦ for (a), (b), (c) and (d) respectively.
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Figure 2. Scaling plot for the adsorption �. The line is the scaling function from (4) while the
symbols are numerical results from DFT for various radii R.

gas intrudes between the liquid and the wall and the contact angle is 180◦. From figure 1 we
see that as ρwεwf decreases and the critical drying transition is approached then the density
near to the wall becomes more depleted. As t ′ → 0− a layer of fluid with density similar to
that of the coexisting gas forms next to the wall—see (d).

We calculated the Gibbs adsorption per unit area �/A = ∫ ∞
0 dz(ρ(z) − ρl) as a function

of t ′ at fixed T = 0.7Tc. Since the drying film thickness leq ≈ −�/A(ρl − ρg), as t ′ → 0−
we expect from section 2 that a plot of the modulus of the adsorption versus |t ′|−1 should be
linear with a gradient proportional to c(Td). Indeed, a linear plot provides an excellent fit to
the DFT data (not shown). The gradient is about 10% larger than the value obtained using the
sharp-kink value for c(Td). The discrepancy arises because the value of c(T ) depends on the
details of the density profile and on the exact definition for l [8].

When curvature is introduced the approach of section 2 predicts a scaling relation for the
drying film thickness leq and therefore for �/4π R2, near Td. In figure 2 we plot numerical
results for the adsorption � ≡ 4π

∫ ∞
R drr2 (ρ(r)−ρl) with different wall radii at various values
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Figure 3. Log–log plot of adsorption � against wall radius R for the liquid at Td = 0.7Tc (t ′ = 0).
The circles (◦) show DFT data points. The line is a linear fit to the data with gradient 0.2502.
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Figure 4. Surface tension γwl of the wall–liquid interface at t ′ = 0 versus inverse radius. The
corresponding wall–gas surface tension γwg has been subtracted. The line is a fit to the DFT data
(◦) assuming a R−3/4 curvature dependent correction. This has intercept 0.545 208 (planar DFT
result: γgl(∞)βσ 2 = 0.545 199) and the coefficient of (σ/R)3/4 is 0.742; (7) predicts 0.755.

of (negative) t ′. The DFT results agree very well with the scaling prediction (4), especially for
|t ′| very small.

At the planar transition temperature (b(Td) = 0) leq is expected to diverge with radius as
R1/4 (see (6)). This prediction is confirmed in figure 3 by a log–log plot of adsorption per unit
area against radius; the linear fit to the DFT data gives a gradient of 0.2502. According to (6) the
intercept should be ln[(ρl − ρg)σ

2(1.5σc(Td)/γgl(∞))1/4]. A value for c(Td) was calculated
using the fit to planar adsorption data. Combining this with an independently calculated DFT
result for γgl(∞) we obtain a value for the intercept of −1.087, which is very close to that
found by fitting to the DFT data (−1.094).

In section 2 we argued that the surface tension γwl(R), for T near to Td, should be non-
analytic in the curvature. We plot, in figure 4, DFT results obtained for systems at t ′ = 0.
The line represents a fit to the data assuming the form (7). The intercept yields the difference
between the planar wall–liquid and wall–gas surface tensions. This is simply γgl(∞). (For the
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planar system at Td the wall–gas and gas–liquid interfaces are macroscopically far apart.) We
find that γgl(∞) obtained from a fit to the sphere data agrees with the result from an independent
DFT calculation on a planar system to one part in 5 × 104. In the caption we compare the
coefficient of (σ/R)3/4, the leading-order curvature correction, obtained from the same fit and
from (7) (using results for c(Td) and γgl(∞) calculated in the planar system). The agreement
is better than 2%, attesting to the presence of the R−3/4 non-analyticity.

4. Discussion

We have studied the effects of curvature on a long-ranged critical drying transition. Using
an effective interfacial potential enabled the identification of different regimes of interfacial
behaviour depending on the radius of the sphere and the proximity to the planar transition
temperature Td. Power-law non-analytic contributions in the curvature R−1 were predicted
for the Gibbs adsorption � and the surface tension γwl(R) for T in the vicinity of Td. These
predictions were confirmed fully by numerical results obtained using a microscopic DFT
approach. In particular, |�|/4π R2 increases as R1/4 (figure 3) for T = Td and is described in
terms of a scaling function of (t ′4 R)−1 (figure 2) for T 
= Td. γwl(R) contains a non-analytic
term proportional to R−3/4 (figure 4) for T = Td. The physical relevance of such non-analytic
contributions was discussed for complete drying in [6] and similar considerations apply here.
In the present case the curvature dependence, expressed in the power-laws R1/4 and R−3/4,
reflects directly the character of drying criticality; the exponent 1/4 follows immediately
from (3); recall b(Td) = 0. Note that incorporating the capillary-wave fluctuations, which
are omitted in both theoretical approaches used here, should not alter our (mean-field) results.
The upper critical dimension is 11/5 for critical wetting described by (3), i.e., for dispersion
forces [2].

Provided T � Td, we can identify a regime in which γwl(R) can be expanded in integer
powers of the curvature. It is only in this regime that the analysis of König et al [10] might
become relevant. Of course, if we consider states away from bulk coexistence other physical
length scales and other regimes enter the analysis [6, 7, 11].

Recently there has been considerable interest in the properties of interfaces between
hydrophobic surfaces and water [12–16] driven by the relevance to biological phenomena,
for example, protein folding. Regions of depleted water density at hydrophobic interfaces
have been measured using neutron reflectivity [14, 15] and x-ray reflectivity [16]. Typically
the density in the depleted layer was around 90% of the bulk water density, indicating partial
drying. The extent of the layer varies significantly from system to system [14–16]. Complete
drying has not been observed experimentally. This suggests that our results for temperatures
below Td might be relevant to solvophobic substrates. DFT results for density profiles show
different degrees of density depletion at the substrate depending on the strength of the wall–fluid
potential attraction or, equivalently, on the variable t ′—see figure 1.

In real systems curvature is always present so an understanding of its effects on wetting
and drying transitions is crucial. Although our results pertain to a drying situation and a
solvophobic substrate, we expect that the main features, such as the non-analyticities in the
curvature dependence of � and γwl(R), will also apply to critical wetting transitions. The
results may also be relevant for the solvation of colloidal particles in a phase separating binary
solvent, where one of the components is adsorbed preferentially at the surface of the colloid.
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